ECE 307 – Techniques for Engineering Decisions

17. Value-at-Risk or VaR

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Commodity traders trade important commodities

such as foodstuff, livestock, metals, oils, and

electricity using financial instruments known as

forward contracts

☐ Standardized forward contracts are known as

futures

☐ Futures have finite lives and are primarily used to

hedge commodity price-fluctuation risks or to take

advantage of price movements, rather than for the

purchase or sale of the actual cash commodity

☐ The buyer of the futures contract agrees on a fixed

purchase price to buy the underlying commodity

from the seller upon the expiration of the contract; the seller of the futures contract agrees to sell the underlying commodity to the buyer at expiration at the fixed delivery price

- □ As time passes, the contract's price changes with respect to the specified price at which the trade was initiated
- ☐ This creates profits or losses for each trading side

- ☐ The word "contract" is used because a futures contract requires delivery of the commodity in a stated month in the future unless the contract is liquidated before it expires
- However, in most cases, delivery never takes place
- □ Instead, both the buyer and the seller, usually liquidate their positions before the contract expires; the buyer sells his futures and the seller buys futures and thus all the transactions are

financial rather than physical

COMMODITY PORTFOLIOS

- □ Traders usually hold portfolios of commodities: each portfolio comprises a collection of different commodities, each bought at a certain price/time, and comes with distinct terms and conditions
- □ Such holding is done in order to diversify the portfolio and thereby mitigate the overall risk
- ☐ The value of a portfolio, at any given point in time, is determined by the sum of the individual values of each of the commodities in the 'basket'

IMPORTANCE OF DIVERSIFYING THROUGH PORTFOLIO HOLDING

- □ A well balanced and diversified portfolio provides
 - benefits to the holder by lowering the overall risk
- ☐ The key reason is because market or other
 - economic conditions that cause one futures
 - contract to perform very well may often cause a
 - different contract to perform rather poorly

IMPORTANCE OF DIVERSIFYING THROUGH PORTFOLIO HOLDING

□ Speculators and hedgers hold diversified

positions so as not to have "all eggs in one

basket"

☐ While diversification is not a guarantee against

loss, it is an effective strategy to help manage the

risk faced by the holder

PORTFOLIO ANALYSIS

☐ We consider a portfolio of investments, say

securities, and we analyze and quantify the risk

■ We first define the notation and the key metric

☐ We go over the steps for the determination of the

VaR metric for a general case

MARKET UNCERTAINTIES

- □ We consider the purchase of a portfolio P at time t $= 0 ext{ for the overall price } p_0$
- ☐ The value of the portfolio varies over time and we denote its value at an arbitrary time t by p_t
- ☐ This portfolio is exposed to the various sources of uncertainty to which the market for each component or commodity is subjected and consequently its value fluctuates as a result of the impacts of the various sources of uncertainty

PERFORMANCE PREDICTION

- ☐ On any given trading day t = T, the fixed portfolio may either incur a loss or a gain or remain unchanged with respect to its value at t = T 1
- We wish to determine what the *worst performance* of the portfolio may be from the day t = T 1 to the day t = T and how to systematically measure the

performance over any two consecutive days

PERFORMANCE PREDICTION

 \Box On day t = T, we cannot lose more than the

overall value p_T of the portfolio and this

statement holds true with a probability of 1

☐ In other words, with a probability of 1, the loss

must be less than or equal to p_T

PORTFOLIO VALUE AND RETURNS

lacktriangle We evaluate the change $\delta_{\scriptscriptstyle T}$ in the portfolio closing

value p_t from day t = T - 1 to day t = T as:

$$\boldsymbol{\delta}_{T} = \boldsymbol{p}_{T} - \boldsymbol{p}_{T-1}$$

 \square We define the rate of return r_t of the portfolio from

day t = T - 1 to day t = T in terms of δ_T to be

$$r_T = \frac{\delta_T}{p_{T-1}}$$

PORTFOLIO VALUE AND RETURNS

 \Box The value of r_t for each observation is the change

in the portfolio value from day t = T - 1 to day t = T

normalized by the protfolio value on day T-1

- □ The value of r_t must lie in the interval $[-1, \infty)$
- \square A non-positive value of r_t indicates a loss in the

portfolio value from day t = T - 1 to day t = T

- lacksquare Suppose that we have the set of r_t data for a good number of days
- lacktriangle We analyze the set of r_t data obtained from sampling from a population the realizations of the portfolio price random variable \underline{P} with the past values

$$\{p_0, p_1, \dots, p_{T-1}, p_T, \dots\}$$

- \square We use the r.v. $\underset{\sim}{P}$ to define the two r.v.s \triangle and $\underset{\sim}{R}$
- \square The sample values of R are $\{r_1, r_2, \dots, r_{T-1}, r_T, \dots\}$

	date	close price	loss/gain	percent loss/gain	
P	3/5/2007	\$42.15	-\$0.33	-0.78%	
	3/2/2007	\$42.48	-\$0.65	-1.51%	R
	3/1/2007	\$43.13	-\$0.20	-0.46%	
	2/28/2007	\$43.33	\$0.14	0.32%	
	2/27/2007	\$43.19	-\$1.85	-4.11%	
			•		Δ
	•	•			
	3/18/1999	\$105.12	\$2.00	1.94%	
	3/17/1999	\$103.12	-\$0.75	-0.72%	
	3/16/1999	\$103.87	\$0.87	0.84%	
	3/15/1999	\$103.00	\$2.88	2.88%	
	3/12/1999	\$100.12	-\$2.50	-2.44%	
	3/11/1999	\$102.62	\$0.50	0.49%	

^{© 2006 - 2018} George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved.

	date	close price	loss/gain	percent loss/gain	
	3/5/2007	\$42.15	-\$0.33	-0.78%	
	3/2/2007	\$42.48	-\$0.65	-1.51%	7 3/1/2007
	3/1/2007	\$43.13	-\$0.20	-0.46%	
	2/28/2007	\$43.33	\$0.14	0.32%	
	2/27/2007	\$43.19	-\$1.85	-4.11%	
	/.	•	•		
$p_{3/1/2007}$		•	•	•	$\delta_{3/1/2007}$
	۰	•	•	•	
3/1/2007	3/18/1999	\$105.12	\$2.00	1.94%	
	3/17/1999	\$103.12	-\$0.75	-0.72%	
	3/16/1999	\$103.87	\$0.87	0.84%	
	3/15/1999	\$103.00	\$2.88	2.88%	
	3/12/1999	\$100.12	-\$2.50	-2.44%	
	3/11/1999	\$102.62	\$0.50	0.49%	

- \square We can use the historical values of R to construct a probability distribution function
- The first step is to determine the frequency of R taking on values in certain intervals; for this purpose, we discretize R and define 'buckets' in which we drop the realized values of R
- \Box The number of values in each bucket is used to compute the frequency of R taking on a value in that bucket

'BUCKETS' AND FREQUENCY

buckets	frequency
-10.00 %	0
-9.75 %	0
-9.50 %	1
-9.25 %	0
•	•
-0.50 %	118
-0.25 %	140
0.00 %	158
0.25 %	146
0.50 %	160
•	•
•	
19.25 %	0
19.50 %	0
19.75 %	1
20.00 %	0

FREQUENCY VS. RETURNS **DISTRIBUTION**

NORMALIZATION

- We first normalize these frequencies using the total number of observations and interpret the normalized quantities as the values of a discrete probability mass distribution function
- We then construct the corresponding c.d.f. approximation from the data, and interpret the results in terms of the returns realized for the portfolio

NORMALIZED FREQUENCY **DISTRIBUTION**

CUMULATIVE DISTRIBUTION FUNCTION (c.d.f.) of R

INTERPRETING THE c.d.f.

- We consider the data set to be representative of the distribution of the population of the outcomes collected from the past trading days of interest
- ☐ We focused on the example "the probability that R is less than or equal to -2.25% is 0.1"
- □ We may view the complement of the probability value (0.1) as a "confidence level" with probability 0.9 and so we restate the above as "with a

confidence level of 0.9, R will exceed - 2.25 %"

UNDERSTANDING THE c.d.f.

- □ In general, for confidence level (1-y), the information provided by the c.d.f. approximation allows us to determine the value r that R exceeds 100 (1-y) % of the days based on the collected observations in the data set
- □ For example, the c.d.f. approximation implies that with a 0.95 confidence level, R exceeds -3.44 %
- We can interpret this statement to mean that with a confidence level of 0.95 we don't expect to lose more than 3.44 % of the previous day value in the worst case over any two consecutive days

c.d.f. OF R

VALUE - AT - RISK (VaR)

- □ Terminology: "with a confidence level of 0.95, the VaR is -3.44 %" means that with a 0.95 percent confidence level, the return over any two consecutive days cannot be below -3.44 %
- ☐ A negative VaR, say v < 0, means that the *losses* on any one day cannot exceed -v%
- □ *VaR* is a measure of the return which is exceeded based on the observations available for the past time period, with the specified confidence level

CUMULATIVE DISTRIBUTION FUNCTION (c.d.f.)

VALUE - AT - RISK (VaR)

- □ *VaR* is usually expressed as a percentage value of the portfolio
- □ VaR answers the fundamental question facing a risk manager – on any given day, how much can I lose at the specified confidence level?
- ☐ The entire procedure may be extended to determine returns over any time period (e.g., two days, a week, or a month, etc.) and *VaR* can therefore be calculated for any such period

VALUE - AT - RISK (VaR)

□ *VaR* is commonly used by banks, security firms

and companies that are involved in trading

energy and other commodities

□ VaR is a measure of risk as it happens and

provides an important metric for firms that make

trading or hedging decisions

A PRACTICAL ASSIGNMENT

- □ Pick any 5 stocks and construct a 1,000-share portfolio equally weighted (200 shares each) from each of the 5 stocks
- ☐ Obtain historic stock price data starting from January 1, 2002 (http://finance.yahoo.com)
- □ Calculate \triangle and R for each P observation: assume that all dividends are reinvested to purchase more stock (fractional amounts, if necessary)

ASSIGNMENT

☐ Plot the normalized frequency distribution and

the c.d.f. for the data collected

 \Box Compute the VaR for the confidence levels 95 %

and 99 %

Interpret what these values mean specific to your

particular portfolio